Package: hkevp 1.1.5
hkevp: Spatial Extreme Value Analysis with the Hierarchical Model of Reich and Shaby (2012)
Several procedures for the hierarchical kernel extreme value process of Reich and Shaby (2012) <doi:10.1214/12-AOAS591>, including simulation, estimation and spatial extrapolation. The spatial latent variable model <doi:10.1214/11-STS376> is also included.
Authors:
hkevp_1.1.5.tar.gz
hkevp_1.1.5.zip(r-4.5)hkevp_1.1.5.zip(r-4.4)hkevp_1.1.5.zip(r-4.3)
hkevp_1.1.5.tgz(r-4.4-x86_64)hkevp_1.1.5.tgz(r-4.4-arm64)hkevp_1.1.5.tgz(r-4.3-x86_64)hkevp_1.1.5.tgz(r-4.3-arm64)
hkevp_1.1.5.tar.gz(r-4.5-noble)hkevp_1.1.5.tar.gz(r-4.4-noble)
hkevp_1.1.5.tgz(r-4.4-emscripten)hkevp_1.1.5.tgz(r-4.3-emscripten)
hkevp.pdf |hkevp.html✨
hkevp/json (API)
# Install 'hkevp' in R: |
install.packages('hkevp', repos = c('https://lbelzile.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lbelzile/hkevp/issues
Last updated 2 years agofrom:1e058265c5. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win-x86_64 | OK | Nov 06 2024 |
R-4.5-linux-x86_64 | OK | Nov 06 2024 |
R-4.4-win-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-aarch64 | OK | Nov 06 2024 |
R-4.3-win-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-aarch64 | OK | Nov 06 2024 |
Exports:extrapol.gevextrapol.return.levelhkevp.expmeasurehkevp.fithkevp.predicthkevp.randlatent.fitmcmc_deponlymcmc_hkevpmcmc_latentmcmc.funmcmc.plotreturn.level
Dependencies:RcppRcppArmadillo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Spatial extrapolation of GEV parameters with the HKEVP | extrapol.gev |
Spatial extrapolation of a return level. | extrapol.return.level |
A hierarchical model for spatial extreme values | hkevp |
Exponent measure of the HKEVP | hkevp.expmeasure |
Fitting procedure of the HKEVP with MCMC algorithm | hkevp.fit |
Predictive distribution of the max-stable process at target positions. | hkevp.predict |
Simulation of the HKEVP | hkevp.rand |
Fitting procedure of the latent variable model | latent.fit |
Point estimates of HKEVP fit | mcmc.fun |
Markov chains plotting | mcmc.plot |
The associated return level | return.level |