Package: longevity (via r-universe)

September 17, 2024

Type Package

Title Statistical Methods for the Analysis of Excess Lifetimes **Version** 1.1.1

BugReports https://github.com/lbelzile/longevity/issues

URL https://lbelzile.github.io/longevity/

Depends R (>= 4.0.0)

Imports numDeriv, Rcpp (>= 1.0.6), rlang, Rsolnp

Suggests knitr, ggplot2 (>= 3.0.0), tinytest, rmarkdown

LinkingTo Rcpp, RcppArmadillo

Description A collection of parametric and nonparametric methods for the analysis of survival data. Parametric families implemented include Gompertz-Makeham, exponential and generalized Pareto models and extended models. The package includes an implementation of the nonparametric maximum likelihood estimator for arbitrary truncation and censoring pattern based on Turnbull (1976) <doi:10.1111/j.2517-6161.1976.tb01597.x>, along with graphical goodness-of-fit diagnostics. Parametric models for positive random variables and peaks over threshold models based on extreme value theory are described in Rootzén and Zholud (2017) <doi:10.1007/s10687-017-0305-5>; Belzile et al. (2021) <doi:10.1098/rsos.202097> and Belzile et al. (2022) <doi:10.1146/annurev-statistics-040120-025426>.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

VignetteBuilder knitr

Repository https://lbelzile.r-universe.dev

RemoteUrl https://github.com/lbelzile/longevity

RemoteRef HEAD

RemoteSha 6182dca00252fb9d51d9b313032cdfbb732dae2d

Contents

autoplot.elife_northropcoleman	•	•	•	•	•	•			•		•	•	 •	•	•	•	•	•	•	•	2
autoplot.elife_par										 			 								3
autoplot.elife_tstab										 											5
dutch										 											6
englandwales																					7
ewsim										 											8
fit_elife										 											8
french										 											10
idl										 											11
idlmetadata										 											12
italian													 								13
japanese										 											14
japanese2																					
lpost_elife										 											15
nc_test										 											17
nll_elife										 											18
npsurv																					20
np_elife																					21
plot.elife_ecdf																					23
plot.elife_profile																					24
prof_gp_endpt													 •								25
samp_elife													 •								26
test_elife													 •								28
tstab		•											 •								29
																					32

Index

autoplot.elife_northropcoleman

P-value plot for Northrop and Coleman diagnostic

Description

The Northrop-Coleman tests for penultimate models are comparing the piece-wise generalized Pareto distribution to the generalized Pareto above the lower threshold.

Usage

```
autoplot.elife_northropcoleman(object, ...)
## S3 method for class 'elife_northropcoleman'
plot(x, plot.type = c("base", "ggplot"), plot = TRUE, ...)
```

autoplot.elife_par

Arguments

object	object of class elife_northropcoleman, with the fitted piecewise-constant gen- eralized Pareto model
	additional arguments for base plot
х	an object of class elife_northropcoleman
plot.type	string indicating the type of plot
plot	logical; should the routine print the graph if plot.type equals "ggplot"? Default to TRUE.

Value

a base R or ggplot object with p-values for the Northrop-Coleman test against thresholds.

autoplot.elife_par Goodness-of-fit plots for parametric models

Description

Because of censoring and truncation, the plotting positions must be adjusted accordingly. For rightcensored data, the methodology is described in Waller & Turnbull (1992). Only non-censored observations are displayed, which can create distortion.

Usage

```
autoplot.elife_par(object, ...)
## S3 method for class 'elife_par'
plot(
    x,
    plot.type = c("base", "ggplot"),
    which.plot = c("pp", "qq"),
    confint = c("none", "pointwise", "simultaneous"),
    plot = TRUE,
    ...
)
```

Arguments

object	an object of class elife_par containing the fitted parametric model
	additional arguments, currently ignored by the function.
х	a parametric model of class elife_par
plot.type	string, one of base for base R or ggplot

which.plot	vector of string indicating the plots, among pp for probability-probability plot, qq for quantile-quantile plot, erp for empirically rescaled plot (only for censored data), exp for standard exponential quantile-quantile plot or tmd for Tukey's mean difference plot, which is a variant of the Q-Q plot in which we map the pair (x, y) is mapped to $((x+y)/2, y-x)$ are detrended, dens and cdf return the empirical distribution function with the fitted parametric density or distribution function curve superimposed.
confint	logical; if TRUE, creates uncertainty diagnostic via a parametric bootstrap
plot	logical; if TRUE, creates a plot when plot.type="ggplot". Useful for returning ggplot objects without printing the graphs

Details

For truncated data, we first estimate the distribution function nonparametrically, F_n . The uniform plotting positions of the data

$$v_i = [F_n(y_i) - F_n(a_i)]/[F_n(b_i) - F_n(a_i)].$$

For probability-probability plots, the empirical quantiles are transformed using the same transformation, with F_n replaced by the postulated or estimated distribution function F_0 . For quantilequantile plots, the plotting positions v_i are mapped back to the data scale viz.

$$F_0^{-1}{F_0(a_i) + v_i[F_0(b_i) - F_0(a_i)]}$$

When data are truncated and observations are mapped back to the untruncated scale (with, e.g., exp), the plotting positions need not be in the same order as the order statistics of the data.

Value

The function produces graphical goodness-of-fit plots using base R or ggplot objects (returned as an invisible list).

Examples

```
set.seed(1234)
samp <- samp_elife(</pre>
n = 200,
scale = 2,
shape = 0.3,
 family = "gomp",
lower = 0, upper = runif(200, 0, 10),
type2 = "ltrc")
fitted <- fit_elife(</pre>
 time = samp$dat,
 thresh = 0,
 event = ifelse(samp$rcens, 0L, 1L),
 type = "right",
 family = "exp",
export = TRUE)
plot(fitted, plot.type = "ggplot")
# Left- and right-truncated data
```

autoplot.elife_tstab

```
n <- 40L
samp <- samp_elife(</pre>
n = n,
 scale = 2,
 shape = 0.3,
 family = "gp",
 lower = ltrunc <- runif(n),</pre>
 upper = rtrunc <- ltrunc + runif(n, 0, 15),</pre>
 type2 = "ltrt")
fitted <- fit_elife(</pre>
 time = samp,
 thresh = 0,
 ltrunc = ltrunc,
 rtrunc = rtrunc,
 family = "gp",
export = TRUE)
plot(fitted, which.plot = c("tmd", "dens"))
```

autoplot.elife_tstab Threshold stability plots

Description

Threshold stability plots

Usage

```
autoplot.elife_tstab(object, ...)
## S3 method for class 'elife_tstab'
plot(
    x,
    plot.type = c("base", "ggplot"),
    which.plot = c("scale", "shape"),
    plot = TRUE,
    ...
)
```

Arguments

object	object of class elife_tstab, representing parameter estimates to draw threshold stability plots
	additional arguments, currently ignored by the function.
x	an object of class elife_tstab containing the fitted parameters as a function of threshold
plot.type	string, one of base for base R or ggplot

which.plot	vector of string indicating the plots, among pp for probability-probability plot, qq for quantile-quantile plot, erp for empirically rescaled plot (only for censored data), exp for standard exponential quantile-quantile plot or tmd for Tukey's mean difference plot, which is a variant of the Q-Q plot in which we map the pair (x, y) is mapped to $((x+y)/2, y-x)$ are detrended, dens and cdf return the empirical distribution function with the fitted parametric density or distribution
	function curve superimposed.
plot	logical; if TRUE, creates a plot when plot.type="ggplot". Useful for returning ggplot objects without printing the graphs

|--|

Description

This data frame contains information about all Dutch who died above age 92 years between 1986 and 2015. Observations are doubly truncated and such bounds are calculated based on the range of plausible values for these variables. There are 226 records that are interval-censored and interval-truncated for which bdate, ddate and ndays is missing (NA).

Usage

dutch

Format

A data frame with 305143 rows and 11 variables:

ndays survival time (in days)

bdate the smallest plausible birth date given information about month of birth and death and survival (Date)

bmonth month of birth

byear year of birth

- **ddate** the largest plausible death date given information about month of birth and death and survival (Date)
- dmonth month of death

dyear year of death

- **ltrunc** minimum age (in days); the maximum of either 92 years or the number of days reached in 1986
- rtrunc maximum age (in days) an individual could have reached by the end of 2015
- gender factor indicating gender of individual, either female or male
- valid quality flag; A for individuals born in the Netherlands, B for individuals born abroad who died in the Netherlands

englandwales

Source

Statistics Netherlands (CBS). Accessed via the Supplemental material of Einmahl, Einmahl and de Haan (2019)

References

Einmahl, J.J., J.H.J. Einmahl and L. de Haan (2019). *Limits to Human Life Span Through Extreme Value Theory*, Journal of the American Statistical Association, **114**(527), 1075-1080. doi:10.1080/01621459.2018.1537912

englandwales

England and Wales semi-supercentenarian

Description

This data frame contains information about 3866 Welsh and English who died at age ranging from 105 to 110 between 2000 and 2014 (except for two women who died late in December 1999) and a subset of UK supercentenarians from the IDL database (5 male, 80 female) who died during the same period. All records for people who died at age 109 and all men, plus a stratified sample of the women were validated by the General Register Office (GRO). Observations are doubly truncated.

Usage

englandwales

Format

A data frame with 3951 rows and 7 variables:

ndays survival time (in days)

bdate birth date (Date)

ddate death date (Date)

ltrunc minimum age (in days); the maximum of 38350 days (approximately 105 years) or the number of days reached in 2000

rtrunc maximum age (in days) an individual could have reached by the end of 2014

gender factor indicating gender of individual, either female or male

valid quality flag; A for validated records, B for unchecked records

Details

In the original data forwarded by the IDL staff, there were 7 dubious records (missing birth day or month) that were excluded. The referenced technical reports describes the validation procedure in more details and includes (approximate) sampling weights for the validation sample of women who died age 105-108.

Source

Ngaire Coombs, Office for National Statistics (ONS)

References

Office for National Statistics (2016). Accuracy of official high-age population estimates, in England and Wales: an evaluation. Technical report, https://www.ons.gov.uk/peoplepopulationandcommunity/ birthsdeathsandmarriages/ageing/methodologies/accuracyofofficialhighagepopulationestimatesinengland

ewsim

England and Wales simulated supercentenarian data

Description

This data frame contains information about 179 fake records mimicking Welsh and English who died age 110 and above

Usage

ewsim

Format

A data frame with 179 rows and 3 variables:

time survival time above 110 (in years)

ltrunc minimum age above 110 (in years), or zero;

rtrunc maximum age (in years) an individual could have reached by the end of the time frame

fit_elife

Fit excess lifetime models by maximum likelihood

Description

This function is a wrapper around constrained optimization routines for different models with noninformative censoring and truncation patterns.

fit_elife

Usage

```
fit_elife(
  time,
  time2 = NULL,
  event = NULL,
  type = c("right", "left", "interval", "interval2"),
  ltrunc = NULL,
  rtrunc = NULL,
  thresh = 0,
  status = NULL,
  family = c("exp", "gp", "weibull", "gomp", "gompmake", "extgp", "gppiece",
    "extweibull", "perks", "perksmake", "beard", "beardmake"),
  weights = NULL,
  export = FALSE,
  start = NULL,
  restart = FALSE,
  arguments = NULL,
  check = FALSE,
  . . .
)
```

Arguments

time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
thresh	vector of thresholds
status	integer vector giving status of an observation. If NULL (default), this argument is computed internally based on type.
family	string; choice of parametric family
weights	weights for observations
export	logical; should data be included in the returned object to produce diagnostic plots? Default to FALSE.
start	vector of starting values for the optimization routine. If NULL, the algorithm attempts to find default values and returns a warning with false convergence diagnostic if it cannot.
restart	logical; should multiple starting values be attempted? Default to FALSE.

french

-	a named list specifying default arguments of the function that are common to all elife calls
check	logical; if TRUE, fit all submodels to ensure that simpler models fit worst or as well
	additional parameters, currently ignored

Value

an object of class elife_par

Note

The extended generalized Pareto model is constrained to avoid regions where the likelihood is flat so $\xi \in [-1, 10]$ in the optimization algorithm.

The standard errors are obtained via the observed information matrix, calculated using the hessian. In many instances, such as when the shape parameter is zero or negative, the hessian is singular and no estimates are returned.

Examples

```
data(ewsim, package = "longevity")
fit1 <- fit_elife(
    arguments = ewsim,
    export = TRUE,
    family = "exp")
fit2 <- fit_elife(
    arguments = ewsim,
    export = TRUE,
    family = "gp")
plot(fit1)
summary(fit1)
anova(fit2, fit1)</pre>
```

french

French semi-supercentenarian

Description

This data frame contains information about 9853 French semi-supercentenarian, part of the International Database on Longevity (IDL). All supercentenarian records were validated, but only a random sample of semi-supercentenarians were validated. Lifetimes are interval truncated;only people above 110 born after 1978 and people above 105 born after 1987 are included.

Usage

french

Format

A data frame with 9853 rows and 6 variables:

ndays survival time (in days)

bdate birth date (Date)

ddate death date (Date) if the person is alive at the end of the sampling

ltrunc minimum age (in days); the maximum of 38350 days (approximately 105 years) or the number of days reached on January 1st 1978 (supercentenarian) or 1987 (semisupercentenarian)

rtrunc maximum age (in days) an individual could have reached by the end of 2017

gender factor indicating gender of individual, either female or male

References

International Database on Longevity

idl

International Database on Longevity (2021)

Description

This database contains data downloaded from supercentenarian.org, including third first waves, new data provided by ONS for semisupercentenarian, data for Switzerland and Italy previously available for download and removed for confidentiality. Data from Japan and from people aged less than 110 from the USA are excluded because they are of dubious quality. For the USA, the semisupercentenarian records are validated, but this is only a fraction of a cohort whose size is unknown and they are not representative of the whole population. The birth and death dates of the USA people are unknown (only years are given, so the largest plausible range is recorded given the survival in years).

Usage

idl

Format

A data frame with 17721 rows and 10 variables:

country factor, one of CH (Switzerland), OS (Austria), BE (Belgium), QC (Quebec), DE (Germany), DN (Denmark), ES (Spain), FI (Finland), FR (France), NO (Norway), SV (Sweden), EW (England and Wales), IT (Italy) and US (United States of America)

ndays integer; survival (in days)

ageyear integer; floor of maximum age (in years) reached at death

gender factor; male or female

bdate Date; birth date (except for US)

ddate Date; death date (except for US)

- **ltrunc1** integer; lower truncation limit (in days); the minimum number of days someone would have survived to be included in the sampling frame (first interval)
- **rtrunc1** integer; upper truncation limit (in days); the maximum number of days someone would have survived to be included in the sampling frame (first interval)
- **ltrunc2** integer; lower truncation limit (in days); the minimum number of days someone would have survived to be included in the sampling frame (second interval) if applicable, NA otherwise
- rtrunc2 integer; upper truncation limit (in days); the maximum number of days someone would have survived to be included in the sampling frame (second interval) if applicable, NA otherwise

Details

Only dead individuals are included, so the records are truncated. For countries with semisupercentenarians and with different collection period for semisupercentenarians (105-109) and supercentenarians (110+), there are some configurations leading to double interval truncation, in which case data are defined in [ltrunc1, rtrunc1] \cup [ltrunc2, rtrunc2].

References

International Database on Longevity

idlmetadata IDL metadata

Description

This data frame contains country codes and the associated data collection period corresponding to the range for age at death.

Usage

idlmetadata

Format

A data frame with 21 rows and 4 variables:

country factor, one of AUT (Austria), BEL (Belgium), CAN (Quebec), DEU (Germany), DNK (Denmark), ESP (Spain), FIN (Finland), FRA (France), JPN (Japan), NOR (Norway), SWE (Sweden), EAW (England and Wales) and USA (United States of America)

group factor, either 105-109 for semi-supercentenarians or 110+ for supercentenarians"

ldate Date, smallest death date

rdate Date, latest death date

italian

Details

Due to confidentiality restrictions, some data that were available in previous versions of the IDL for Switzerland, Italy and some entries for Japan and Belgium have been removed. As the IDL metadata are updated somewhat regularly and former versions of the database are not preserved, results from published analyses are replicable but not reproducible.

References

International Database on Longevity, extracted on February 13th, 2023

italian

Italian semi-supercentenarian

Description

This data frame contains information about 3836 Italians individually validated survival lifetimes times in days of all persons in Italy who were at least 105 years old at some point in the period from 1 January 2009 to 31 December 2015. Observations are left-truncated and right-censored. These data are not publicly available, but can be purchased from the Italian National Institute of Statistics by registering at the Contact Center and mentioning the Semi-supercentenarian Survey and Marco Marsili as contact person.

Usage

italian

Format

A data frame with 3836 rows and 6 variables:

ndays survival time (in days)

bdate birth date (Date)

ddate death date (Date), or NA_Date_ if the person is alive at the end of the sampling

ltrunc minimum age (in days); the maximum of 38351 days (approximately 105 years) or the number of days reached in 2009

event integer indicating the censoring pattern; 0 for right-censored records, 1 for fully observed

gender factor indicating gender of individual, either female or male

References

Istituto Nazionale di Statistica

japanese

Description

This data frame contains information about the counts of dead Japanese by gender and year of birth (cohort), categorized by the whole part of age attained at death.

Usage

japanese

Format

A data frame with 1038 rows and 4 variables:

age integer, age (to the smallest year) at death (in years)

byear integer, birth year

count integer, number of death for cohort at given age

gender factor, the gender of the individuals; either male or female

Details

These data were obtained from the Annual Vital Statistics Report of Japan, released by the Japanese government every year since 1947. The authors note that "All the members of that cohort have died by the end of the observation period, a procedure referred to as the extinct cohort method". The data were obtained from the Human Mortality Database by the authors. Only positive counts are reported and two records (Misao Okawa and Jiroemon Kimura) are excluded because they do not correspond to the same selection mechanism.

Source

Table extracted from Hanayama & Sibuya (2016).

References

Hanayama, N. and M. Sibuya (2016). Estimating the Upper Limit of Lifetime Probability Distribution, Based on Data of Japanese Centenarians, *The Journals of Gerontology: Series A*, 71(8), 1014–1021. doi:10.1093/gerona/glv113

japanese2

Description

This data frame is extracted from Table 10.3 from Chapter 10, "Centenarians and Supercentenarians in Japan", in the Monograph Exceptional lifespans. The data were constructed by the extinct cohort method and are stratified by age cohort (five year group, except 1899-1900) and by sex. Note that the family registry system (KOSEKI), introduced in 1872, was standardized in 1886.

Usage

japanese2

Format

A data frame with 216 rows and 4 variables:

age integer, age (to the smallest year) at death (in years)

bcohort factor, birth cohort

count integer, number of death for cohort at given age

gender factor, the gender of the individuals; either male or female

Source

Table 10.3

References

Saito, Yasuhiko and Futoshi Ishii, and Jean-Marie Robine (2021). *Centenarians and Supercentenarians in Japan*. In *Exceptional lifespans*, Maier, H., Jeune, B., Vaupel, J. W. (Eds.), Demographic research monographs 17 VII, pp. 125-145. Cham, Springer.

lpost_elife

Log posterior distribution with MDI priors

Description

Log of the posterior distribution for excess lifetime distribution with maximal data information priors.

Usage

```
lpost_elife(
  par,
  time,
  time2 = NULL,
  event = NULL,
  type = c("right", "left", "interval", "interval2"),
  ltrunc = NULL,
  rtrunc = NULL,
  family = c("exp", "gp", "gomp"),
  thresh = 0,
  weights = rep(1, length(time)),
  status = NULL,
  arguments = NULL,
  ...
)
```

Arguments

par	vector of parameters, in the following order: scale, rate and shape
time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
family	string; choice of parametric family
thresh	vector of thresholds
weights	weights for observations
status	integer vector giving status of an observation. If NULL (default), this argument is computed internally based on type.
arguments	a named list specifying default arguments of the function that are common to all elife calls
	additional arguments for optimization, currently ignored.

Value

a vector proportional to the log posterior (the sum of the log likelihood and log prior)

16

Description

This function computes the score test with the piecewise generalized Pareto distribution under the null hypothesis that the generalized Pareto with a single shape parameter is an adequate simplification. The score test statistic is calculated using the observed information matrix; both hessian and score vector are obtained through numerical differentiation.

Usage

```
nc_test(
   time,
   time2 = NULL,
   event = NULL,
   thresh = 0,
   ltrunc = NULL,
   type = c("right", "left", "interval", "interval2"),
   weights = rep(1, length(time)),
   test = c("score", "lrt"),
   arguments = NULL,
   ...
)
```

Arguments

time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
thresh	a vector of thresholds
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
weights	weights for observations
test	string, either "score" for the score test or "lrt" for the likelihood ratio test.
arguments	a named list specifying default arguments of the function that are common to all elife calls
	additional parameters, currently ignored

Details

The score test is much faster and perhaps less fragile than the likelihood ratio test: fitting the piecewise generalized Pareto model is difficult due to the large number of parameters and multimodal likelihood surface.

The reference distribution is chi-square

Value

a data frame with the following variables:

- thresh: threshold for the generalized Pareto distribution
- nexc: number of exceedances
- score: score statistic
- df: degrees of freedom
- pval: the p-value obtained from the asymptotic chi-square approximation.

Examples

```
set.seed(1234)
n <- 100L
x <- samp_elife(n = n,</pre>
                 scale = 2,
                 shape = -0.2,
                 lower = low <- runif(n),</pre>
                 upper = upp <- runif(n, min = 3, max = 20),</pre>
                 type2 = "ltrt",
                 family = "gp")
test <- nc_test(</pre>
  time = x,
  ltrunc = low,
  rtrunc = upp,
  thresh = quantile(x, seq(0, 0.5, by = 0.1)))
print(test)
plot(test)
```

nll_elife

Likelihood for arbitrary censored and truncated data

Description

Computes the log-likelihood for various parametric models suitable for threshold exceedances. If threshold is non-zero, then only right-censored, observed event time and interval censored data whose timing exceeds the thresholds are kept.

nll_elife

Usage

```
nll_elife(
  par,
  time,
  time2 = NULL,
  event = NULL,
  type = c("right", "left", "interval", "interval2"),
  ltrunc = NULL,
  rtrunc = NULL,
  family = c("exp", "gp", "gomp", "gompmake", "weibull", "extgp", "gppiece",
        "extweibull", "perks", "beard", "perksmake", "beardmake"),
  thresh = 0,
  weights = NULL,
  status = NULL,
  arguments = NULL,
  ...
)
```

Arguments

par	vector of parameters, in the following order: scale, rate and shape
time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
family	string; choice of parametric family
thresh	vector of thresholds
weights	weights for observations
status	integer vector giving status of an observation. If NULL (default), this argument is computed internally based on type.
arguments	a named list specifying default arguments of the function that are common to all elife calls
	additional arguments for optimization, currently ignored.

Value

log-likelihood values

npsurv

Examples

```
data(ewsim, package = "longevity")
nll_elife(par = c(5, 0.3),
    family = "gp",
    arguments = ewsim)
```

npsurv	Nonparametric maximum	likelihood estimation for	arbitrary trunca-
	tion		

Description

The syntax is reminiscent of the Surv function, with additional vectors for left-truncation and right-truncation.

Usage

```
npsurv(
  time,
  time2 = NULL,
  event = NULL,
  type = c("right", "left", "interval", "interval2"),
  ltrunc = NULL,
  rtrunc = NULL,
  weights = NULL,
  arguments = NULL,
  ...
)
```

Arguments

time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
weights	vector of weights, default to NULL for equiweighted
arguments	a named list specifying default arguments of the function that are common to all elife calls
	additional arguments passed to the functions

20

np_elife

Value

a list with components

- xval: unique ordered values of sets on which the distribution function is defined
- prob: estimated probability of failure on intervals
- convergence: logical; TRUE if the EM algorithm iterated until convergence
- niter: logical; number of iterations for the EM algorithm
- · cdf: nonparametric maximum likelihood estimator of the distribution function

Note

Contrary to the Kaplan-Meier estimator, the mass is placed in the interval [max(time), Inf) so the resulting distribution function is not deficient.

See Also

Surv

Examples

```
#' # Toy example with interval censoring and right censoring
# Two observations: A1: [1,3], A2: 4
# Probability of 0.5
test_simple2 <- npsurv(
   time = c(1,4),
   time2 = c(3,4),
   event = c(3,1),
   type = "interval"
)
```

np_elife

Nonparametric estimation of the survival function

Description

The survival function is obtained through the EM algorithm described in Turnbull (1976); censoring and truncation are assumed to be non-informative. The survival function changes only at the J distinct exceedances $y_i - u$ and truncation points.

Usage

```
np_elife(
   time,
   time2 = NULL,
   event = NULL,
   type = c("right", "left", "interval", "interval2"),
```

```
thresh = 0,
ltrunc = NULL,
rtrunc = NULL,
tol = 1e-12,
weights = NULL,
method = c("em", "sqp"),
arguments = NULL,
maxiter = 100000L,
....)
```

Arguments

time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
thresh	double thresh
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
tol	double, relative tolerance for convergence of the EM algorithm
weights	double, vector of weights for the observations
method	string, one of "em" for expectation-maximization (EM) algorithm or "sqp" for sequential quadratic programming with augmented Lagrange multiplie method.
arguments	a named list specifying default arguments of the function that are common to all elife calls
maxiter	integer, maximum number of iterations for the EM algorithm
	additional arguments, currently ignored

Details

The unknown parameters of the model are p_j (j = 1, ..., J) subject to the constraint that $\sum_{j=1}^{J} p_j = 1$.

Value

a list with elements

- cdf: right-continuous stepfun object defined by probabilities
- time: matrix of unique values for the Turnbull intervals defining equivalence classes; only those with non-zero probabilities are returned

22

- prob: J vector of non-zero probabilities
- niter: number of iterations

References

Turnbull, B. W. (1976). *The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data.* Journal of the Royal Statistical Society. Series B (Methodological) 38(3), 290–295.

Gentleman, R. and C. J. Geyer (1994). *Maximum likelihood for interval censored data: Consistency and computation*, Biometrika, 81(3), 618–623.

Frydman, H. (1994). A Note on Nonparametric Estimation of the Distribution Function from Interval-Censored and Truncated Observations, Journal of the Royal Statistical Society. Series B (Methodological) **56**(1), 71-74.

Examples

```
set.seed(2021)
n <- 20L
# Create fake data
ltrunc <- pmax(0, runif(n, -0.5, 1))</pre>
rtrunc <- runif(n, 6, 10)
dat <- samp_elife(n = n,</pre>
                   scale = 1,
                   shape = -0.1,
                   lower = ltrunc,
                   upper = rtrunc,
                   family = "gp",
                   type2 = "ltrt")
npi <- np_elife(time = dat,</pre>
                 rtrunc = rtrunc,
                 ltrunc = ltrunc)
print(npi)
summary(npi)
plot(npi)
```

plot.elife_ecdf Plot empirical distribution function

Description

Plot empirical distribution function

Usage

```
## S3 method for class 'elife_ecdf'
plot(x, ...)
```

Arguments

х	argument of class elife_ecdf
	additional arguments for the plot

Value

base R plot of the empirical distribution function

plot.elife_profile Plot profile of endpoint

Description

Plot profile of endpoint

Usage

```
## S3 method for class 'elife_profile'
plot(x, plot.type = c("base", "ggplot"), plot = TRUE, ...)
```

```
autoplot.elife_profile(object, ...)
```

Arguments

x	an object of class elife_profile containing information about the profile like- lihood, maximum likelihood and grid of values for the endpoint
plot.type	string indicating whether to use base R for plots or ggplot2
plot	logical; if TRUE, creates a plot when plot.type="ggplot". Useful for returning ggplot objects without printing the graphs
	additional arguments to pass to plot, currently ignored
object	object of class elife_profile

Value

base R or ggplot object for a plot of the profile log likelihood of the endpoint of the generalized Pareto distribution

 ${\tt prof_gp_endpt}$

Description

This function returns the profile log likelihood over a grid of values of psi, the endpoints.

Usage

```
prof_gp_endpt(
   time,
   time2 = NULL,
   event = NULL,
   thresh = 0,
   type = c("right", "left", "interval", "interval2"),
   ltrunc = NULL,
   rtrunc = NULL,
   weights = rep(1, length(time)),
   psi = NULL,
   confint = FALSE,
   level = 0.95,
   arguments = NULL,
   ...
)
```

Arguments

time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
thresh	vector of thresholds
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
weights	weights for observations
psi	mandatory vector of endpoints at which to compute the profile
confint	logical; if TRUE, return a level confidence interval instead of a list with the profile log-likelihood components

level	numeric; the level for the confidence intervals
arguments	a named list specifying default arguments of the function that are common to all elife calls
	additional parameters, currently ignored

Value

a list with the maximum likelihood estimate of the endpoint and the profile log-likelihood

Examples

```
set.seed(2023)
time <- relife(n = 100, scale = 3, shape = -0.3, family = "gp")
endpt <- prof_gp_endpt(
   time = time,
   psi = seq(max(time) + 1e-4, max(time) + 40, length.out = 51L))
print(endpt)
plot(endpt)
confint(endpt)</pre>
```

samp_elife

Simulate excess lifetime with truncation or right-censoring

Description

This function dispatches simulations accounting for potential left-truncation (remove by setting lower to zero). If type2=ltrt, simulated observations will be lower than the upper bounds upper. If type2=ltrc, simulated observations are capped at upper and the observation is right-censored (rcens=TRUE).

Usage

```
samp_elife(
    n,
    scale,
    rate,
    shape = NULL,
    lower = 0,
    upper = Inf,
    family = c("exp", "gp", "gomp", "gompmake", "weibull", "extgp", "gppiece",
        "extweibull", "perks", "beard", "perksmake", "beardmake"),
    type2 = c("none", "ltrt", "ltrc", "ditrunc")
)
```

samp_elife

Arguments

n	sample size
scale	scale parameter(s)
rate	rate parameter(s)
shape	shape parameter(s)
lower	vector of lower bounds
upper	vector of upper bounds
family	string; choice of parametric family
type2	string, either none, ltrt for left- and right-truncated data or ltrc for left- truncated right-censored data

Value

either a vector of observations or, if type2=ltrc, a list with n observations dat and a logical vector of the same length with TRUE for right-censored observations and FALSE otherwise.

Note

As the tails of the Gompertz and Gompertz–Makeham models decrease exponentially fast, the method fails in the rare event case if the lower bound is too large (say larger than the 99.99

Examples

```
set.seed(1234)
n <- 500L
# Simulate interval truncated data
x <- samp_elife(n = n,
                 scale = 2,
                 shape = 1.5,
                 lower = low <- runif(n),</pre>
                 upper = upp <- runif(n, min = 3, max = 15),</pre>
                 type2 = "ltrt",
                 family = "weibull")
coef(fit_elife(
   time = x,
   ltrunc = low,
   rtrunc = upp,
   family = "weibull"))
# Simulate left-truncated right-censored data
x <- samp_elife(n = n,</pre>
                scale = 2,
                 shape = 1.5,
                 lower = low <- runif(n),</pre>
                 upper = upp <- runif(n, min = 3, max = 15),
                 type2 = "ltrc",
                 family = "gomp")
#note that the return value is a list...
coef(fit_elife(
   time = x$dat,
```

```
ltrunc = low,
event = !x$rcens,
family = "gomp"))
```

```
test_elife
```

Likelihood ratio test for covariates

Description

This function fits separate models for each distinct value of the factor covariate and computes a likelihood ratio test to test whether there are significant differences between groups.

Usage

```
test_elife(
  time,
  time2 = NULL,
  event = NULL,
  covariate,
  thresh = 0,
  ltrunc = NULL,
  rtrunc = NULL,
  type = c("right", "left", "interval", "interval2"),
  family = c("exp", "gp", "weibull", "gomp", "gompmake", "extgp", "extweibull", "perks",
        "perksmake", "beard", "beardmake"),
   weights = rep(1, length(time)),
   arguments = NULL,
   ...
)
```

Arguments

time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
covariate	vector of factors, logical or integer whose distinct values define groups
thresh	vector of thresholds
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".

28

family	string; choice of parametric family
weights	weights for observations
arguments	a named list specifying default arguments of the function that are common to all elife calls
	additional arguments for optimization, currently ignored.

Value

a list with elements

- stat likelihood ratio statistic
- df degrees of freedom
- pval the p-value obtained from the asymptotic chi-square approximation.

Examples

```
test <- with(subset(dutch, ndays > 39082),
 test_elife(
  time = ndays,
  thresh = 39082L,
  covariate = gender,
  ltrunc = ltrunc,
  rtrunc = rtrunc,
  family = "exp"))
 test
```

tstab

Threshold stability plots

Description

The generalized Pareto and exponential distribution are threshold stable. This property, which is used for extrapolation purposes, can also be used to diagnose goodness-of-fit: we expect the parameters ξ and $\tilde{\sigma} = \sigma + \xi u$ to be constant over a range of thresholds. The threshold stability plot consists in plotting maximum likelihood estimates with pointwise confidence interval. This function handles interval truncation and right-censoring.

Usage

```
tstab(
  time,
  time2 = NULL,
  event = NULL,
  thresh = 0,
  ltrunc = NULL,
  rtrunc = NULL,
  type = c("right", "left", "interval", "interval2"),
```

```
family = c("gp", "exp"),
method = c("wald", "profile"),
level = 0.95,
plot = TRUE,
plot.type = c("base", "ggplot"),
which.plot = c("scale", "shape"),
weights = NULL,
arguments = NULL,
...
```

Arguments

time	excess time of the event of follow-up time, depending on the value of event
time2	ending excess time of the interval for interval censored data only.
event	status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE for death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have experienced an event.
thresh	vector of thresholds
ltrunc	lower truncation limit, default to NULL
rtrunc	upper truncation limit, default to NULL
type	character string specifying the type of censoring. Possible values are "right", "left", "interval", "interval2".
family	string; distribution, either generalized Pareto (gp) or exponential (exp)
method	string; the type of pointwise confidence interval, either Wald (wald) or profile likelihood (profile)
level	probability level for the pointwise confidence intervals
plot	logical; should a plot be returned alongside with the estimates? Default to TRUE
plot.type	string; either base for base R plots or ggplot for ggplot2 plots
which.plot	string; which parameters to plot;
weights	weights for observations
arguments	a named list specifying default arguments of the function that are common to all elife calls
	additional arguments for optimization, currently ignored.

Details

The shape estimates are constrained

Value

an invisible list with pointwise estimates and confidence intervals for the scale and shape parameters

30

tstab

See Also

tstab.gpd from package mev, gpd.fitrange from package ismev or tcplot from package evd, among others.

Examples

Index

* datasets dutch, 6 englandwales, 7 ewsim, 8 french, 10 idl.11 idlmetadata, 12 italian, 13 japanese, 14 japanese2, 15 autoplot.elife_northropcoleman, 2 autoplot.elife_par, 3 autoplot.elife_profile (plot.elife_profile), 24 autoplot.elife_tstab, 5 dutch, 6 englandwales, 7ewsim,8 fit_elife, 8 french, 10 idl, 11 idlmetadata, 12 italian, 13 japanese, 14 japanese2, 15 lpost_elife, 15 nc_test, 17 nll_elife, 18 np_elife, 21 npsurv, 20

 $\texttt{plot.elife_ecdf}, \texttt{23}$